skip to main content


Search for: All records

Creators/Authors contains: "Oliver, Thomas A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Ocean warming is increasingly affecting marine ecosystems across the globe. Reef‐building corals are particularly affected by warming, with mass bleaching events increasing in frequency and leading to widespread coral mortality. Yet, some corals can resist or recover from bleaching better than others. Such variability in thermal resilience could be critical to reef persistence; however, the scientific community lacks standardized diagnostic approaches to rapidly and comparatively assess coral thermal vulnerability prior to bleaching events. We present the Coral Bleaching Automated Stress System (CBASS) as a low‐cost, open‐source, field‐portable experimental system for rapid empirical assessment of coral thermal thresholds using standardized temperature stress profiles and diagnostics. The CBASS consists of four or eight flow‐through experimental aquaria with independent water masses, lighting, and individual automated temperature controls capable of delivering custom modulating thermal profiles. The CBASS is used to conduct daily thermal stress exposures that typically include 3‐h temperature ramps to multiple target temperatures, a 3‐h hold period at the target temperatures, and a 1‐h ramp back down to ambient temperature, followed by an overnight recovery period. This mimics shallow water temperature profiles observed in coral reefs and prompts a rapid acute heat stress response that can serve as a diagnostic tool to identify putative thermotolerant corals for in‐depth assessments of adaptation mechanisms, targeted conservation, and possible use in restoration efforts. The CBASS is deployable within hours and can assay up to 40 coral fragments/aquaria/day, enabling high‐throughput, rapid determination of thermal thresholds for individual genotypes, populations, species, and sites using a standardized experimental framework.

     
    more » « less
  2. Abstract

    The oceans are warming and coral reefs are bleaching with increased frequency and severity, fueling concerns for their survival through this century. Yet in the central equatorial Pacific, some of the world’s most productive reefs regularly experience extreme heat associated with El Niño. Here we use skeletal signatures preserved in long-lived corals on Jarvis Island to evaluate the coral community response to multiple successive heatwaves since 1960. By tracking skeletal stress band formation through the 2015-16 El Nino, which killed 95% of Jarvis corals, we validate their utility as proxies of bleaching severity and show that 2015-16 was not the first catastrophic bleaching event on Jarvis. Since 1960, eight severe (>30% bleaching) and two moderate (<30% bleaching) events occurred, each coinciding with El Niño. While the frequency and severity of bleaching on Jarvis did not increase over this time period, 2015–16 was unprecedented in magnitude. The trajectory of recovery of this historically resilient ecosystem will provide critical insights into the potential for coral reef resilience in a warming world.

     
    more » « less
  3. Abstract

    The effects of nutrient pollution on coral reef ecosystems are multifaceted. Numerous experiments have sought to identify the physiological effects of nutrient enrichment on reef‐building corals, but the results have been variable and sensitive to choices of nutrient quantity, chemical composition and exposure duration.

    To test the effects of chronic, ecologically relevant nutrient enrichment on coral growth and photophysiology, we conducted a 5‐week continuous dosing experiment on two Hawaiian coral species,Porites compressaandPocillopora acuta. We acclimated coral fragments to five nutrient concentrations (0.1–7 µMand 0.06–2.24 µM) with constant stoichiometry 2.5:1 nitrate to phosphate) bracketing in situ observations from reefs throughout the Pacific.

    Nutrient enrichment linearly increased photophysiological performance of both species within 3 weeks. The effect of nutrients onP. acutaphotochemical efficiency increased through time while a consistent response inP. compressaindicated acclimation to elevated nutrients within 5 weeks. Endosymbiont densities and total chlorophyll concentrations also increased proportionally with nutrient enrichment inP. acuta, but not inP. compressa, revealing contrasting patterns of host–symbiont acclimatization.

    The two species also exhibited contrasting effects of nutrient enrichment on skeletal growth. Calcification was enhanced at low nutrient enrichment (1 µM) inP. acuta, but comparable to the control at higher concentrations, whereas calcification was reduced inP. compressa(30%–35%) above 3 µM.

    Stable isotope analysis revealed species‐specific nitrogen uptake dynamics in the coral–algal symbiosis. The endosymbionts ofP. acutaexhibited increased nitrogen uptake (decreased δ15N) and incorporation (19%–31% decrease in C:N ratios) across treatments. In contrast,P. compressaendosymbionts maintained constant δ15N values and low levels of nitrogen incorporation (9%–11% decrease in C:N ratios). The inability ofP. acutato regulate endosymbiont nutrient uptake may indicate an emerging destabilization in the coral–algal symbiosis under nutrient enrichment that could compromise resistance to additional environmental stressors.

    Our results highlight species‐specific differences in the coral–algal symbiosis, which influence responses to chronic nutrient enrichment. These findings showcase how symbioses can vary among closely related taxa and underscore the importance of considering how life‐history traits modify species response to environmental change.

    A freePlain Language Summarycan be found within the Supporting Information of this article.

     
    more » « less
  4. Climate change threatens coral reefs by causing heat stress events that lead to widespread coral bleaching and mortality. Given the global nature of these mass coral mortality events, recent studies argue that mitigating climate change is the only path to conserve coral reefs. Using a global analysis of 223 sites, we show that local stressors act synergistically with climate change to kill corals. Local factors such as high abundance of macroalgae or urchins magnified coral loss in the year after bleaching. Notably, the combined effects of increasing heat stress and macroalgae intensified coral loss. Our results offer an optimistic premise that effective local management, alongside global efforts to mitigate climate change, can help coral reefs survive the Anthropocene.

     
    more » « less